Selasa, 17 Desember 2013 0 komentar

Statistik: Uji Normalitas

Uji Normalitas

Uji Normalitas


Uji normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal. Metode klasik dalam pengujian normalitas suatu data tidak begitu rumit. Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar.

Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji statistik normalitas. Karena belum tentu data yang lebih dari 30 bisa dipastikan berdistribusi normal, demikian sebaliknya data yang banyaknya kurang dari 30 belum tentu tidak berdistribusi normal, untuk itu perlu suatu pembuktian. uji statistik normalitas yang dapat digunakan diantaranya Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro Wilk.




Metode Chi Square

(Uji Goodness Of Fit Distribusi Normal)

Metode Chi-Square atau X2 untuk Uji Goodness of fit Distribusi Normal menggunakan pendekatan penjumlahan penyimpangan data observasi tiap kelas dengan nilai yang diharapkan.





Keterangan :
X2 = Nilai X2
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)
N = Banyaknya angka pada data (total frekuensi)


Komponen penyusun rumus tersebut di atas didapatkan berdasarkan pada hasil transformasi data distribusi frekuensi yang akan diuji normalitasnya, sebagai berikut:





Keterangan :
Xi = Batas tidak nyata interval kelas
Z = Transformasi dari angka batas interval kelas ke notasi pada distribusi normal
pi = Luas proporsi kurva normal tiap interval kelas berdasar tabel normal
Oi = Nilai observasi
Ei = Nilai expected / harapan, luasan interval kelas berdasarkan tabel normal dikalikan N (total frekuensi) (pi x N)



Persyaratan Metode Chi Square (Uji Goodness of fit Distribusi Normal)
a. Data tersusun berkelompok atau dikelompokkan dalam tabel distribus frekuensi.
b. Cocok untuk data dengan banyaknya angka besar ( n > 30 )
c. Setiap sel harus terisi, yang kurang dari 5 digabungkan.


Signifikansi:
Signifikansi uji, nilai X2 hitung dibandingkan dengan X2 tabel (Chi-Square).
Jika nilai X2 hitung < nilai X2 tabel, maka Ho diterima ; Ha ditolak.
Jika nilai X2 hitung > nilai X2 tabel, maka maka Ho ditolak ; Ha diterima.






Contoh:
Diambil Tinggi Badan Mahasiswa Di Suatu Perguruan Tinggi Tahun 2010




Selidikilah dengan α = 5%, apakah data tersebut di atas berdistribusi normal ? (Mean = 157.8; Standar deviasi = 8.09)
Penyelesaian :
1. Hipotesis :

  • Ho : Populasi tinggi badan mahasiswa berdistribusi normal
  • H1 : Populasi tinggi badan mahasiswa tidak berdistribusi normal

2. Nilai α

  • Nilai α = level signifikansi = 5% = 0,05

3. Rumus Statistik penguji











Luasan pi dihitung dari batasan proporsi hasil tranformasi Z yang dikonfirmasikan dengan tabel distribusi normal.







4. Derajat Bebas

  • Df = ( k – 3 ) = ( 5 – 3 ) = 2

5. Nilai tabel

  • Nilai tabel X2 ; α = 0,05 ; df = 2 ; = 5,991. Tabel X2 (Chi-Square) pada lampiran.

6. Daerah penolakan

  • - Menggunakan gambar



  • - Menggunakan rumus:   |0,427 | < |5,991| ; berarti Ho diterima, Ha ditolak
7. Kesimpulan:  Populasi tinggi badan mahasiswa berdistribusi normal α = 0,05.

Untuk Metode yang lain, yaitu Liliefors, Kolmogorov Smirnov dan Saphiro Wilk

Senin, 16 Desember 2013 1 komentar

STATISTIK: MENGHITUNG BESAR SAMPEL PENELITIAN

MENGHITUNG BESAR SAMPEL PENELITIAN

MENGHITUNG BESAR SAMPEL PENELITIAN


Dalam statistik inferensial, besar sampel sangat menentukan representasi sampel yang diambil dalam menggambarkan populasi penelitian. Oleh karena itu menjadi satu kebutuhan bagi setiap peneliti untuk memahami kaidah-kaidah yang benar dalam menentukan sampel minimal dalam sebuah penelitian.

Cara menghitung besar sampel suatu penelitian sangat ditentukan oleh desain penelitian yang digunakan dan data yang diambil. Jenis penelitian observasional dengan menggunakan disain cross-sectional akan berbeda dengan case-control study dan khohor, demikian pula jika data yang dikumpulkan adalah proporsi akan beda dengan jika data yang digunakan adalah data continue. Pada penelitian di bidang kesehatan masyarakat, kebanyakan menggunakan disain atau pendekatan cross-sectional atau belah lintang, meskipun ada beberapa yang menggunakan case control ataupun khohor.

Terdapat banyak rumus untuk menghitung besar sampel minimal sebuah penelitian, namun pada artikel ini akan disampaikan sejumlah rumus yang paling sering dipergunakan oleh para peneliti.

1. Penelitian Cross-sectional

Untuk penelitian survei, biasanya rumus yang bisa dipakai menggunakan proporsi binomunal (binomunal proportions). Jika besar populasi (N) diketahui, maka dicari dengan menggunakan rumus berikut:


Dengan jumlah populasi (N) yang diketahui, maka peneliti bisa melakukan pengambilan sampel secara acak).

Namun apabila besar populasi (N) tidak diketahui atau (N-n)/(N-1)=1 maka besar sampel dihitung dengan rumus sebagai berikut :




Keterangan :
n = jumlah sampel minimal yang diperlukan
= derajat kepercayaan
p = proporsi anak yang diberi ASI secara eksklusif
q = 1-p (proporsi anak yang tidak diberi ASI secara eksklusif
d = limit dari error atau presisi absolut
Jika ditetapkan =0,05 atau Z1- /2 = 1,96 atau Z2
1- /2 = 1,962 atau dibulatkan menjadi 4, maka rumus untuk besar N yang diketahui kadang-kadang diubah menjadi:




Misalnya, kita ingin mencari sampel minimal untuk suatu penelitian mencari faktor determinan pemberian ASI secara eksklusif. Untuk mendapatkan nilai p, kita harus melihat dari penelitian yang telah ada atau literatur. Dari hasil hasil penelitian Suyatno (2001) di daerah Demak-Jawa Tengah, proporsi bayi (p) yang diberi makanan ASI eksklusif sekitar 17,2 %. Ini berarti nilai p = 0,172 dan nilai q = 1 – p. Dengan limit dari error (d) ditetapkan 0,05 dan nilai Alfa = 0,05, maka jumlah sampel yang dibutuhkan sebesar:



= 219 orang (angka minimal)
Jika tidak diketemukan nilai p dari penelitian atau literatur lain, maka dapat dilakukan maximal estimation dengan p = 0,5. Jika ingin teliti teliti maka nilai d sekitar 2,5 % (0,025) atau lebih kecil lagi.


2. Case Control dan Khohor

Rumus yang digunakan untuk mencari besar sampel baik case control maupun khohor adalah sama, terutama jika menggunakan ukuran proporsi. Hanya saja untuk penelitian khohor, ada juga yang menggunakan ukuran data kontinue (nilai mean).
Besar sampel untuk penelitian case control adalah bertujuan untuk mencari sampel minimal untuk masing-masing kelompok kasus dan kelompok kontrol. Kadang kadang peneliti membuat perbandingan antara jumlah sampel kelompok kasus dan kontrol tidak harus 1 : 1, tetapi juga bisa 1: 2 atau 1 : 3 dengan tujuan untuk memperoleh hasil yang lebih baik. Adapun rumus yang banyak dipakai untuk mencari sampel
minimal penelitian case-control adalah sebagai berikut:




Pada penelitian khohor yang dicari adalah jumlah minimal untuk kelompok exposure dan non-exposure atau kelompok terpapar dan tidak terpapar. Jika yang digunakan adalah data proporsi maka untuk penelitian khohor nilai p0 pada rumus di atas sebagai proporsi yang sakit pada populasi yang tidak terpapar dan p1 adalah proporsi yang sakit pada populasi yang terpapar atau nilai p1 = p0 x RR (Relative Risk).
Jika nilai p adalah data kontinue (misalnya rata-rata berat badan, tinggi badan, IMT dan sebagainya) atau tidak dalam bentuk proporsi, maka penentuan besar sampel untuk kelompok dilakukan berdasarkan rumus berikut.

Contoh kasus, misalnya kita ingin mencari sampel minimal pada penelitian tentang pengaruh pemberian ASI eksklusif dengan terhadap berat badan bayi. Dengan menggunakan tingkat kemaknaan 95 % atau Alfa = 0,05, dan tingkat kuasa/power 90 % atau ß=0,10, serta kesudahan (outcome) yang diamati adalah berat badan bayi yang ditetapkan memiliki nilai asumsi SD=0,94 kg (mengacu data dari penelitian LPKGM di Purworejo,
Jawa Tengah), dan estimasi selisih antara nilai mean kesudahan (outcome) berat badan kelompok tidak terpapar dan kelompok terpapar selama 4 bulan pertama kehidupan bayi (U0 – U1) sebesar 0,6 kg (mengacu hasil penelitian Piwoz, et al. 1994), maka perkiraan jumlah minimal sampel yang dibutuhkan tiap kelompok pengamatan, baik terpapar atau tidak terpapar adalah:



= 51,5 orang atau dibulatkan: 52 orang/kelompok

Pada penelitian khohor harus ditambah dengan jumlah lost to follow atau akalepas selama pengamatan, biasanya diasumsikan 15 %. Pada contoh diatas, maka sampel minimal yang diperlukan menjadi n= 52 (1+0,15) = 59,8 bayi atau dibulatkan menjadi sebanyak 60 bayi untuk masing-masing kelompok baik kelompok terpapar ataupun tidak terpapar atau total 120 bayi untuk kedua kelompok tersebut.


3. Penelitian Eksperimental

Menurut Supranto J (2000) untuk penelitian eksperimen dengan rancangan acak lengkap, acak kelompok atau faktorial, secara sederhana dapat dirumuskan:
(t-1) (r-1) > 15

dimana : t = banyaknya kelompok perlakuan
j = jumlah replikasi

Contohnya: Jika jumlah perlakuan ada 4 buah, maka jumlah ulangan untuk tiap perlakuan dapat dihitung:

(4 -1) (r-1) > 15
(r-1) > 15/3
r > 6


Untuk mengantisipasi hilangnya unit ekskperimen maka dilakukan koreksi dengan 1/(1-f) di mana f adalah proporsi unit eksperimen yang hilang atau mengundur diri atau drop out.


Download Dokumen Dalam Bentuk PDF

Referensi:

1. Bhisma-Murti, Prinsip dan Metoda Riset Epidemiologi, Gadjah Mata University Press,1997
2. Lemeshow, S. & David W.H.Jr, 1997. Besar Sampel dalam Penelitian Kesehatan (terjemahan), Gadjahmada University Press, Yogyakarta
3. Snedecor GW & Cochran WG, Statistical Methods 6th ed, Ames, IA: Iowa State University Press, 1967
4. Supranto, J. 2000. Teknik Sampling untuk Survei dan Eksperimen. Penerbit PT Rineka Cipta, Jakarta.
0 komentar

Statistik: Rumus Kai Kuadrat/ Chi-Square

Rumus Kai Kuadrat/ Chi-Square

Rumus Chi Square


Chi-Square disebut juga dengan Kai Kuadrat. Chi Square adalah salah satu jenis uji komparatif non parametris yang dilakukan pada dua variabel, di mana skala data kedua variabel adalah nominal. (Apabila dari 2 variabel, ada 1 variabel dengan skala nominal maka dilakukan uji chi square dengan merujuk bahwa harus digunakan uji pada derajat yang terendah).

Uji chi-square merupakan uji non parametris yang paling banyak digunakan. Namun perlu diketahui syarat-syarat uji ini adalah: frekuensi responden atau sampel yang digunakan besar, sebab ada beberapa syarat di mana chi square dapat digunakan yaitu:
  1. Tidak ada cell dengan nilai frekuensi kenyataan atau disebut juga Actual Count (F0) sebesar 0 (Nol).
  2. Apabila bentuk tabel kontingensi 2 X 2, maka tidak boleh ada 1 cell saja yang memiliki frekuensi harapan atau disebut juga expected count ("Fh") kurang dari 5.
  3. Apabila bentuk tabel lebih dari 2 x 2, misak 2 x 3, maka jumlah cell dengan frekuensi harapan yang kurang dari 5 tidak boleh lebih dari 20%.
Rumus chi-square sebenarnya tidak hanya ada satu. Apabila tabel kontingensi bentuk 2 x 2, maka rumus yang digunakan adalah "koreksi yates". Untuk rumus koreksi yates, sudah kami bahas dalam artikel sebelumnya yang berjudul "Koreksi Yates".

Apabila tabel kontingensi 2 x 2 seperti di atas, tetapi tidak memenuhi syarat seperti di atas, yaitu ada cell dengan frekuensi harapan kurang dari 5, maka rumus harus diganti dengan rumus "Fisher Exact Test".

Pada artikel ini, akan fokus pada rumus untuk tabel kontingensi lebih dari 2 x 2, yaitu rumus yang digunakan adalah "Pearson Chi-Square".

Rumus Tersebut adalah:



Untuk memahami apa itu "cell", lihat tabel di bawah ini:

Pendidikan
Pekerjaan
Total
1
2
1
a
b
a+b
2
c
d
c+d
3
e
f
e+f
Total
a+c+e
b+d+f
N

Tabel di atas, terdiri dari 6 cell, yaitu cell a, b, c, d, e dan f.


Sebagai contoh kita gunakan penelitian dengan judul "Perbedaan Pekerjaan Berdasarkan Pendidikan".
Maka kita coba gunakan data sebagai berikut:

Responden
Pendidikan
Pekerjaan
1
1
1
2
2
2
3
1
2
4
2
2
5
1
2
6
3
2
7
2
2
8
1
2
9
2
2
10
1
2
11
1
2
12
3
1
13
3
1
14
2
1
15
1
2
16
3
2
17
2
2
18
2
2
19
1
1
20
2
2
21
3
1
22
1
1
23
3
2
24
1
2
25
3
1
26
2
2
27
1
2
28
1
2
29
2
2
30
1
1
31
2
2
32
2
1
33
2
1
34
1
1
35
2
2
36
1
1
37
3
2
38
2
2
39
2
1
40
3
2
41
1
1
42
3
2
43
1
1
44
2
2
45
1
1
46
3
1
47
3
2
48
2
1
49
3
2
50
2
1
51
2
1
52
2
2
53
3
2
54
1
1
55
2
2
56
2
2
57
1
1
58
3
1
59
2
1
60
3
1


Dari data di atas, kita kelompokkan ke dalam tabel kontingensi. Karena variabel pendidikan memiliki 3 kategori dan variabel pekerjaan memiliki 2 kategori, maka tabel kontingensi yang dipakai adalah tabel 3 x 2. Maka akan kita lihat hasilnya sebagai berikut:

Pendidikan
Pekerjaan
Total
1
2
1
11
9
20
2
8
16
24
3
7
9
16
Total
26
34
60

Dari tabel di atas, kita inventarisir per cell untuk mendapatkan nilai frekuensi kenyataan, sebagai berikut:

Cell
F0
a
11
b
9
c
8
d
16
e
7
f
9

Langkah berikutnya kita hitung nilai frekuensi harapan per cell, rumus menghitung frekuensi harapan adalah sebagai berikut: 

Fh= (Jumlah Baris/Jumlah Semua) x Jumlah Kolom
  1. Fh cell a = (20/60) x 26 = 8,667
  2. Fh cell b = (20/60) x 34 = 11,333
  3. Fh cell c = (24/60) x 26 = 10,400
  4. Fh cell d = (24/60) x 34 = 13,600
  5. Fh cell e = (16/60) x 26 = 6,933
  6. Fh cell f = (16/60) x 34 = 9,067
Maka kita masukkan ke dalam tabel sebagai berikut:

Cell
F0
Fh
a
11
8,667
b
9
11,333
c
8
10,400
d
16
13,600
e
7
6,933
f
9
9,067

Langkah berikutnya adalah menghitung Kuadrat dari Frekuensi Kenyataan dikurangi Frekuensi Harapan per cell.
  1. Fh cell a = (11 - 8,667)2 = 5,444
  2. Fh cell b = (9 - 11,333)2 = 5,444
  3. Fh cell c = (8 - 10,400)2 = 5,760
  4. Fh cell d = (16 - 13,600)2 = 5,760
  5. Fh cell e = (7 - 6,933)2 = 0,004
  6. Fh cell f = (9 - 9,067)2 = 0,004
Lihat hasilya pada tabel di bawah ini:

Cell
F0
Fh
F0 - Fh
(F0 - Fh)2
a
11
8,667
2,333
5,444
b
9
11,333
-2,333
5,444
c
8
10,400
-2,400
5,760
d
16
13,600
2,400
5,760
e
7
6,933
0,067
0,004
f
9
9,067
-0,067
0,004

Kuadrat dari Frekuensi Kenyataan dikurangi Frekuensi Harapan per cell kemudian dibagi frekuensi harapannya:
  1. Fh cell a = 5,444/8,667 = 0,628
  2. Fh cell b = 5,444/11,333 = 0,480
  3. Fh cell c = 5,760/10,400 = 0,554
  4. Fh cell d = 5,760/13,600 = 0,424
  5. Fh cell e = 0,004/6,933 = 0,001
  6. Fh cell f = 0,004/9,067 = 0,000
Kemudian dari nilai di atas, semua ditambahkan, maka itulah nilai chi-square hitung. Lihat Tabel di bawah ini:

Cell
F0
Fh
F0 - Fh
(F0 - Fh)2
(F0 - Fh)2/Fh
a
11
8,667
2,333
5,444
0,628
b
9
11,333
-2,333
5,444
0,480
c
8
10,400
-2,400
5,760
0,554
d
16
13,600
2,400
5,760
0,424
e
7
6,933
0,067
0,004
0,001
f
9
9,067
-0,067
0,004
0,000
Chi-Square Hitung =
2,087

Maka Nilai Chi-Square Hitung adalah sebesar: 2,087.

Untuk menjawab hipotesis, bandingkan chi-square hitung dengan chi-square tabel pada derajat kebebasan atau degree of freedom (DF) tertentu dan taraf signifikansi tertentu. Apabila chi-square hitung >= chi-square tabel, maka perbedaan bersifat signifikan, artinya H0 ditolak atau H1 diterima.

DF pada contoh di atas adalah 2. Di dapat dari rumus -> DF = (r - 1) x (c-1)
di mana: r = baris. c = kolom.
Pada contoh di atas, baris ada 3 dan kolom ada 2, sehingga DF = (2 - 1) x (3 -1) = 2.

Apabila taraf signifikansi yang digunakan adalah 95% maka batas kritis 0,05 pada DF 2, nilai chi-square tabel sebesar = 5,991.

Karena 2,087 < 5,991 maka perbedaan tidak signifikan, artinya H0 diterima atau H1 ditolak


 
;